Cellular and Salivary Diagnostics: Linking Oral and Systemic Health
Compendium features peer-reviewed articles and continued education opportunities on restorative techniques, clinical insights, and dental innovations, offering essential knowledge for dental professionals.
To paraphrase a statement made by a friend and colleague, Dr. David Wong, associate dean at UCLA, one of the most laudable goals for any human being is to prevent disease for a large number of people. As dentists and the dental profession moves toward the medical model of preventive healthcare management by assessing, diagnosing, counseling, and healing, this philosophy should be guiding our course of action.
Request your sample today!
The dental pulp of both primary and permanent dentition contains an abundant supply of an individual’s undifferentiated stem cells. If these stem cells are properly collected, prepared, and stored (often referred to as stem-cell banking) in the future they may be able to provide the genetic code for tissue regeneration and other information as medical science progresses. As dentists we are ideally positioned to be the pathway to the collection of these potentially invaluable cells.
Human saliva contains human DNA as well as bacterial and viral DNA, and the same genetic information found throughout the body is also found in saliva, making it ideal in testing for various systemic conditions. Whole saliva is composed of fluids from major and minor salivary glands, gingival crevicular fluid, epithelial and immune cells, and food debris. Salivary evaluation and diagnostics has be a reality; patients rinse with specialized solutions and expectorate into a funneled collection tube that is processed and analyzed at a medical laboratory. Because of the simplicity and noninvasive nature of salivary collection and testing, these screening modalities strongly appeal to clinicians.
A survey of almost 2,000 practicing dentists reported that 87% were receptive to noninvasively collecting saliva and submitting the sample for a diagnostic evaluation and were willing to integrate this procedure into their clinical practice.2
Saliva, especially whole saliva, can be easily collected from the patient in a completely noninvasive manner and evaluated at the laboratory to help accurately determine the patient’s present health status and his or her genetic susceptibility to and inherent risk of periodontal disease, as well as many other systemic conditions, including diabetes and various forms of cancer. By combining and interpreting the information obtained through clinical assessments, radiographic findings, and salivary, cellular, and DNA analysis, clinicians can obtain a more accurate evaluation of the patient’s health status today, and possibly in the future.
Saliva is shown to harbor bacteria, viruses, and proteins that can be tested. Simple salivary tests can also identify the type and concentration of pathogenic bacteria that are known to cause periodontal disease. This noninvasive collection method also can be used as a screening tool to help detect various viruses and especially identify patients who might be at an increased risk for oropharyngeal cancer, as well as to help develop the appropriate referral and surveillance recommendations.
It has been reported that more than 70% of Americans regularly visit an oral healthcare provider, approximately 30% more than our medical counterparts.2 This allows for significant opportunities for dental clinicians to engage in the early detection of life-threatening conditions. However, it is imperative that we understand the consequences of these discoveries and learn the proper communication skills and develop the appropriate referral pathways for the management of our findings.
Today, the use of salivary analysis is predominately for periodontal disease and peri-implantitis. Integrating salivary testing, cellular collection, and stem-cell banking into the dental practice can benefit our patients now as well as in the future as science and medicine advances. These measures will be even more valuable as their benefits will be much broader. As salivary diagnostics is fully integrated into dentistry, it presents an opportunity to advance dentistry into primary healthcare.
Scott D. Benjamin, DDS
Visiting Professor, Department of Restorative Dentistry, SUNY at Buffalo School of Dental Medicine, Buffalo, New York; Research Associate, New York University College of Dentistry, New York, New York; Private Practice, Sidney, New York